报告题目:Long time behaviour for a class of dispersive equations from physics
时间:2017年11月01(星期三)13:30-14:30
地点:学院南路校区,学术会堂603
报告人:澳大利亚Monash大学、郭紫华副教授
郭紫华,2009年7月毕业于北京大学获博士学位,后在北京大学数学科学学院任讲师、副教授,2010.9-2011.8受聘于普林斯顿高等研究所博士后访问学者,从2015年起,受聘于澳大利亚Monash大学副教授职位,主要从事调和分析和偏微分方程领域的研究。
摘要:The long-time behaviour of the global solutions to PDEs is an important topic in both mathematics and physics. We will introduce our recent results on three dispersive equtions: quadratic Klein-Gordon, Zakharov, and Gross-Pitaevskii equations. These equations have a common property that the nonlinear terms contain quadratic terms. In 3D, the quadratic terms cause remarkable difficulties in the study of long-time behaviour of the global solutions in the energy space. By proving new Strichartz estimates, and combining with other tools such as normal form method, we can handle these difficulties and hence proving some new results.